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Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a
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® Vj, seq; is either path(v;) or nopath(v;). verification is

doable in Logspace,

® # of vs tor which seq; = path(v;) is c. —

reao-once manner.
o k =n.

oy, <V, < ...< V.

Certificate: size(c) = ......
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There exists a read-once logspace verifiable certificate that:
® Provesv € C..
® Provesv & C, it |C,_| is already known. (certiticate is nopath.(v))

® Proves |C;| =c, it |C,_;| is already known. (certificate is size(c))

We know C, = {s}, | Cy| = 1.

Final certificate for PATH: - Certificate that proves the size of C, knowing | Cy|.

size,(| C | )sizez( | G5 1), ..., size, (| C._i|), nopath, (t)

Corollary: For every space-constructible function S(n) > logn,

NSPACE(S(n)) = coNSPACE(S(n)).



