Lecture 17

NL = coNL

NL = coNL

NL = coNL

Definition: coNL = {L | L € NL}

NL = coNL

Definition: coNL = {L | L € NL}

Example: PATH € coNL.

NL = coNL

Definition: coNL = {L | L € NL}

Example: PATH € coNL.

PATH = { (G, s,t) | G is a directed graph s.t. there is no path from s to t}

NL = coNL

Definition: coNL = {L | L € NL}

Example: PATH € coNL.

PATH = { (G, s,t) | G is a directed graph s.t. there is no path from s to t}

Claim: PATH € NL —> NL = coNL

NL = coNL

Definition: coNL = {L | L € NL}

Example: PATH € coNL.

PATH = { (G, s,t) | G is a directed graph s.t. there is no path from s to t}

Claim: PATH € NL —> NL = coNL

Proof:

NL = coNL

Definition: coNL = {L | L € NL}

Example: PATH € coNL.

PATH = { (G, s,t) | G is a directed graph s.t. there is no path from s to t}

Claim: PATH € NL —> NL = coNL
Proof: coNL C NL:

NL = coNL

Definition: coNL = {L | L € NL}

Example: PATH € coNL.

PATH = { (G, s,t) | G is a directed graph s.t. there is no path from s to t}

Claim: PATH € NL —> NL = coNL
Proof: coNL C NL:

Let L. € coNL.

NL = coNL

Definition: coNL = {L | L € NL}

Example: PATH € coNL.

PATH = { (G, s,t) | G is a directed graph s.t. there is no path from s to t}

Claim: PATH € NL —> NL = coNL
Proof: coNL C NL:

Let L € coNL.Then, L <, PATH.

NL = coNL

Definition: coNL = {L | L € NL}

Example: PATH € coNL.

PATH = { (G, s,t) | G is a directed graph s.t. there is no path from s to ¢}

Claim: PATH € NL —> NL = coNL
Proof: coNL C NL:

Let L € coNL. Then, L <; PATH. (" PATH is coNL-complete)

NL = coNL

Definition: coNL = {L | L € NL}

Example: PATH € coNL.

PATH = { (G, s,t) | G is a directed graph s.t. there is no path from s to ¢}

Claim: PATH € NL —> NL = coNL
Proof: coNL C NL:

Let L € coNL. Then, L <; PATH. (" PATH is coNL-complete)

NL machine for L will first reduce L to PATH and then use NL machine of PATH.

NL = coNL

Definition: coNL = {L | L € NL}

Example: PATH € coNL.

PATH = { (G, s,t) | G is a directed graph s.t. there is no path from s to ¢}

Claim: PATH € NL —> NL = coNL
Proof: coNL C NL:

Let L € coNL. Then, L <; PATH. (" PATH is coNL-complete)

NL machine for L will first reduce L to PATH and then use NL machine of PATH.

NL C coNL:

NL = coNL

Definition: coNL = {L | L € NL}

Example: PATH € coNL.

PATH = { (G, s,t) | G is a directed graph s.t. there is no path from s to ¢}

Claim: PATH € NL —> NL = coNL
Proof: coNL C NL:

Let L € coNL. Then, L <; PATH. (" PATH is coNL-complete)

NL machine for L will first reduce L to PATH and then use NL machine of PATH.

NL C coNL:
L € NL

NL = coNL

Definition: coNL = {L | L € NL}

Example: PATH € coNL.

PATH = { (G, s,t) | G is a directed graph s.t. there is no path from s to ¢}

Claim: PATH € NL —> NL = coNL
Proof: coNL C NL:

Let L € coNL. Then, L <; PATH. (" PATH is coNL-complete)

NL machine for L will first reduce L to PATH and then use NL machine of PATH.

NL C coNL:
L. eNL = L € coNL

NL = coNL

Definition: coNL = {L | L € NL}

Example: PATH € coNL.

PATH = { (G, s,t) | G is a directed graph s.t. there is no path from s to ¢}

Claim: PATH € NL —> NL = coNL
Proof: coNL C NL:

Let L € coNL. Then, L <; PATH. (" PATH is coNL-complete)

NL machine for L will first reduce L to PATH and then use NL machine of PATH.

NL C coNL:
LeENL —=—=LecoNL = L eNL

NL = coNL

Definition: coNL = {L | L € NL}

Example: PATH € coNL.

PATH = { (G, s,t) | G is a directed graph s.t. there is no path from s to ¢}

Claim: PATH € NL —> NL = coNL
Proof: coNL C NL:

Let L € coNL. Then, L <; PATH. (" PATH is coNL-complete)

NL machine for L will first reduce L to PATH and then use NL machine of PATH.

NL C coNL:
LENL=—=L€ecoNL = L eEeNL — L € coNL

NL = coNL

Definition: coNL = {L | L € NL}

Example: PATH € coNL.

PATH = { (G, s,t) | G is a directed graph s.t. there is no path from s to ¢}

Claim: PATH € NL —> NL = coNL
Proof: coNL C NL:

Let L € coNL. Then, L <; PATH. (" PATH is coNL-complete)

NL machine for L will first reduce L to PATH and then use NL machine of PATH.

NL C coNL:
LENL=—=L€ecoNL = L eEeNL — L € coNL

NL = coNL

NL = coNL

Immerman-Szelepcsényi Theorem: PATH & NL.

NL = coNL

Immerman-Szelepcsényi Theorem: PATH & NL.

Proof:

NL = coNL

Immerman-Szelepcsényi Theorem: PATH & NL.

Proof: Idea: Make a read-once certiticate for (G, s, t) € PATH that is verifiable in logspace.

NL = coNL

Immerman-Szelepcsényi Theorem: PATH & NL.

Proof: Idea: Make a read-once certiticate for (G, s, t) € PATH that is verifiable in logspace.

Let C; = Set of all the vertices of G that have a path of length < i from s.

NL = coNL

Immerman-Szelepcsényi Theorem: PATH & NL.

Proof: Idea: Make a read-once certiticate for (G, s, t) € PATH that is verifiable in logspace.

Let C; = Set of all the vertices of G that have a path of length < i from s.

Formally, we want a certificate for 7 & C,.

NL = coNL

Immerman-Szelepcsényi Theorem: PATH & NL.

Proof: Idea: Make a read-once certiticate for (G, s, t) € PATH that is verifiable in logspace.

Let C; = Set of all the vertices of G that have a path of length < i from s.

Formally, we want a certificate for 7 & C,.

Q. For a vertex v, how can someone prove thatv € C,?

NL = coNL

Immerman-Szelepcsényi Theorem: PATH & NL.

Proof: Idea: Make a read-once certiticate for (G, s, t) € PATH that is verifiable in logspace.

Let C; = Set of all the vertices of G that have a path of length < i from s.

Formally, we want a certificate for 7 & C,.

Q. For a vertex v, how can someone prove thatv € C,?

Proposed solution: A sequence of vertices, (v, V5, ..., V).

NL = coNL

Immerman-Szelepcsényi Theorem: PATH & NL.

Proof: Idea: Make a read-once certiticate for (G, s, t) € PATH that is verifiable in logspace.

Let C; = Set of all the vertices of G that have a path of length < i from s.

Formally, we want a certificate for 7 & C,.

Q. For a vertex v, how can someone prove thatv € C,?
Proposed solution: A sequence of vertices, (v, V5, ..., V).

Verification: Check v = s,v, = v

NL = coNL

Immerman-Szelepcsényi Theorem: PATH & NL.

Proof: Idea: Make a read-once certiticate for (G, s, t) € PATH that is verifiable in logspace.

Let C; = Set of all the vertices of G that have a path of length < i from s.

Formally, we want a certificate for 7 & C,.

Q. For a vertex v, how can someone prove thatv € C,?

Proposed solution: A sequence of vertices, (v, V5, ..., V).

Verification: Check v = s,v, =v,vyv, | isan edge,and k <i+ 1.

NL = coNL

Immerman-Szelepcsényi Theorem: PATH & NL.

Proof: Idea: Make a read-once certiticate for (G, s, t) € PATH that is verifiable in logspace.

Let C; = Set of all the vertices of G that have a path of length < i from s.

Formally, we want a certificate for 7 & C,.

verification s

Q. For a vertex v, how can someone prove thatv € C,? :
: doable n Logspace,

. read-once manner.

Proposed solution: A sequence of vertices, (v, V5, ..., V).

Verification: Check v = s,v, =v,vyv, | isan edge,and k <i+ 1.

NL = coNL

Immerman-Szelepcsényi Theorem: PATH & NL.

Proof: Idea: Make a read-once certiticate for (G, s, t) € PATH that is verifiable in logspace.

Let C; = Set of all the vertices of G that have a path of length < i from s.

Formally, we want a certificate for 7 & C,.

verification s

Q. For a vertex v, how can someone prove thatv € C,? :
: doable n Logspace,

. read-once manner.

Proposed solution: A sequence of vertices, (v, V5, ..., V).

Verification: Check v = s,v, =v,vyv, | isan edge,and k <i+ 1.

Certificate: A walk of length at most i from s to v, denoted paih.(v).

NL = coNL

Immerman-Szelepcsényi Theorem: PATH & NL.

Proof: Idea: Make a read-once certiticate for (G, s, t) € PATH that is verifiable in logspace.

Let C; = Set of all the vertices of G that have a path of length < i from s.

Formally, we want a certificate for 7 & C,.

verification s

Q. For a vertex v, how can someone prove thatv € C,? :
: doable n Logspace,

. read-once manner.

Proposed solution: A sequence of vertices, (v, V5, ..., V).

Verification: Check v = s,v, =v,vyv, | isan edge,and k <i+ 1.

Certificate: A walk of length at most i from s to v, denoted paih.(v).

Proof of NL = coNL ...

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C.

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C;, if you know | C;|?

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C;, if you know | C;|?

Idea: For every u € C;, prove thatu € C; and u # v.

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C;, if you know | C;|?

Idea: For every u € C;, prove thatu € C; and u # v.

Proposed Solution: v, : seq,

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C;, if you know | C;|?

Idea: For every u € C;, prove thatu € C; and u # v.

Proposed Solution: v, : seq, v, : seq,

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C;, if you know | C;|?

Idea: For every u € C;, prove thatu € C; and u # v.

Proposed Solution: v, : seq, v, : seq,, ..., Vv, : seq,

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C;, if you know | C;|?

Idea: For every u € C;, prove thatu € C; and u # v.

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C;, if you know | C;|?

Idea: For every u € C;, prove thatu € C; and u # v.

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

sequence of vertices.

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C;, if you know | C;|?

Idea: For every u € C;, prove thatu € C; and u # v.

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

sequence of vertices.

Verification: Check whether:

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C;, if you know | C;|?
Idea: For every u € C;, prove thatu € C; and u # v.

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

sequence of vertices.

Verification: Check whether:

® Vj, seq; is a walk of length at most i from s to v;.

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C;, if you know | C;|?

Idea: For every u € C;, prove thatu € C; and u # v.

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

sequence of vertices.

Verification: Check whether:

® Vj, seq; is a walk of length at most i from s to v;.

® Vj Vv, F V.

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C;, if you know | C;|?

Idea: For every u € C;, prove thatu € C; and u # v.

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

sequence of vertices.

Verification: Check whether:

® Vj, seq; is a walk of length at most i from s to v;.

® Vj Vv, F V.

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C;, if you know | C;|?

Idea: For every u € C;, prove thatu € C; and u # v.

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

sequence of vertices.

Verification: Check whether:

® Vj, seq; is a walk of length at most i from s to v;.

® Vj Vv, F V.

oy, <V, < ...< V.

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C;, if you know | C;|?

Idea: For every u € C;, prove thatu € C; and u # v.

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

sequence of vertices.

Verification: Check whether:

® Vj, seq; is a walk of length at most i from s to v;.

i/ verification is

® ‘v’j, V; + V. - doable tn logspace,

oy, <V, < ...< V.

reao-once manner.

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C;, if you know | C;|?
Idea: For every u € C;, prove thatu € C; and u # v.

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

sequence of vertices.

Verification: Check whether:

® Vj, seq; is a walk of length at most i from s to v;.

i/ verification is
® Vj, V; + V. | - doable tn logspace,
reao-onmce Manner.

oy, <V, < ...< V.

Certificate: v, : path(v,), v, : path(v,), ..., v\¢| : path(v|c|), where v; < v; .

Proof of NL = coNL ...

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C.

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C,, if you know |C,_;|?

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C,, if you know |C,_;|?

Idea: Foreveryu € C,_;, prove thatu € C,_; and u # v and u has no edge to v.

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C,, if you know |C,_;|?

Idea: Foreveryu € C,_;, prove thatu € C,_; and u # v and u has no edge to v.

Proposed Solution: v, : seq,

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C,, if you know |C,_;|?

Idea: Foreveryu € C,_;, prove thatu € C,_; and u # v and u has no edge to v.

Proposed Solution: v, : seq, v, : seq,

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C,, if you know |C,_;|?

Idea: Foreveryu € C,_;, prove thatu € C,_; and u # v and u has no edge to v.

Proposed Solution: v, : seq, v, : seq,, ..., Vv, : seq,

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C,, if you know |C,_;|?

Idea: Foreveryu € C,_;, prove thatu € C,_; and u # v and u has no edge to v.

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C,, if you know |C,_;|?

Idea: Foreveryu € C,_;, prove thatu € C,_; and u # v and u has no edge to v.

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

sequence of vertices.

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C,, if you know |C,_;|?

Idea: Foreveryu € C,_;, prove thatu € C,_; and u # v and u has no edge to v.

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

sequence of vertices.

Verification: Check whether:

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C,, if you know |C,_;|?
Idea: Foreveryu € C,_, prove thatu € C,_; and u # v and u has no edge to v.

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

sequence of vertices.

Verification: Check whether:

® Vj, seq; is a walk of length at most i — 1 from s to v;.

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C,, if you know |C,_;|?

Idea: Foreveryu € C,_;, prove thatu € C,_; and u # v and u has no edge to v.

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

sequence of vertices.

Verification: Check whether:

e Vj seq.is a walk of length at mosti — 1 from s to v..
Ji S€q; 9]

® Vj, v, # vandy; hasno edge tov.

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C,, if you know |C,_;|?

Idea: Foreveryu € C,_;, prove thatu € C,_; and u # v and u has no edge to v.

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

sequence of vertices.

Verification: Check whether:

e Vj seq.is a walk of length at mosti — 1 from s to v..
Ji S€q; 9]

® Vj, v, # vandy; hasno edge tov.

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C,, if you know |C,_;|?

Idea: Foreveryu € C,_;, prove thatu € C,_; and u # v and u has no edge to v.

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

sequence of vertices.

Verification: Check whether:

® Vj, seq; is a walk of length at most i — 1 from s to v;.

® Vj, v, # vandy; hasno edge tov.

oy, <V, < ...< V.

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C,, if you know |C,_;|?

Idea: Foreveryu € C,_, prove thatu € C,_; and u # v and u has no edge to v.

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

sequence of vertices.

Verification: Check whether:

® Vj, seq; is a walk of length at most i — 1 from s to v;.

i verification is

_. doable un Logspace,

® Vj, v, # vandy; hasno edge tov. S 4—

oy, <V, < ...< V.

reao-once manner.

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C,, if you know |C,_;|?

Idea: Foreveryu € C,_, prove thatu € C,_; and u # v and u has no edge to v.

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

sequence of vertices.

Verification: Check whether:

® Vj, seq; is a walk of length at most i — 1 from s to v;.

i verification is

_. doable un Logspace,

® Vj, v, # vandy; hasno edge tov. S 4—

oy, <V, < ...< V.

reao-once manner.

Certificate: nopath.(v)

Proof of NL = coNL ...

Q. For a vertex v, how can someone prove that v & C,, if you know |C,_;|?

Idea: Foreveryu € C,_, prove thatu € C,_; and u # v and u has no edge to v.

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

sequence of vertices.

Verification: Check whether:

® Vj, seq; is a walk of length at most i — 1 from s to v;.

i verification is

_. doable un Logspace,

® Vj, v, # vandy; hasno edge tov. S 4—

oy, <V, < ...< V.

reao-once manner.

Certificate: nopath(v) = vy : path,_y(vy), ..., v|c_ | : path;_1(v|c_), where v; < v, .

Proof of NL = coNL ...

Proof of NL = coNL ...

Q. How can someone prove that |C;| = ¢

Proof of NL = coNL ...

Q. How can someone prove that |C;| = ¢, if you know |C,_;|?

Proof of NL = coNL ...

Q. How can someone prove that |C;| = ¢, if you know |C,_;|?

Idea: For every u € V(G), prove that u € C; or u & C; (whichever is true).

Proof of NL = coNL ...

Q. How can someone prove that |C;| = ¢, if you know |C,_;|?

Idea: For every u € V(G), prove that u € C; or u & C; (whichever is true).

Proposed Solution: v, : seq,

Proof of NL = coNL ...

Q. How can someone prove that |C;| = ¢, if you know |C,_;|?

Idea: For every u € V(G), prove that u € C; or u & C; (whichever is true).

Proposed Solution: v, : seq, v, : seq,

Proof of NL = coNL ...

Q. How can someone prove that |C;| = ¢, if you know |C,_;|?

Idea: For every u € V(G), prove that u € C; or u & C; (whichever is true).

Proposed Solution: v, : seq, v, : seq,, ..., Vv, : seq,

Proof of NL = coNL ...

Q. How can someone prove that |C;| = ¢, if you know |C,_;|?

Idea: For every u € V(G), prove that u € C; or u & C; (whichever is true).

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

Proof of NL = coNL ...

Q. How can someone prove that |C;| = ¢, if you know |C,_;|?

Idea: For every u € V(G), prove that u € C; or u & C; (whichever is true).

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

sequence of vertices.

Proof of NL = coNL ...

Q. How can someone prove that |C;| = ¢, if you know |C,_;|?

Idea: For every u € V(G), prove that u € C; or u & C; (whichever is true).

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

sequence of vertices.

Verification: Check whether:

Proof of NL = coNL ...

Q. How can someone prove that |C;| = ¢, if you know |C,_;|?

Idea: For every u € V(G), prove that u € C; or u & C; (whichever is true).

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

sequence of vertices.

Verification: Check whether:

® Vj, seq; is either path(v;) or nopath(v;).

Proof of NL = coNL ...

Q. How can someone prove that |C;| = ¢, if you know |C,_;|?

Idea: For every u € V(G), prove that u € C; or u & C; (whichever is true).

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

sequence of vertices.

Verification: Check whether:

® Vj, seq; is either path(v;) or nopath(v;).

® # of vs tor which seq; = path(v;) is c.

Proof of NL = coNL ...

Q. How can someone prove that |C;| = ¢, if you know |C,_;|?

Idea: For every u € V(G), prove that u € C; or u & C; (whichever is true).

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

sequence of vertices.

Verification: Check whether:

® Vj, seq; is either path(v;) or nopath(v;).

® # of vs tor which seq; = path(v;) is c.

® k =n.

Proof of NL = coNL ...

Q. How can someone prove that |C;| = ¢, if you know |C,_;|?

Idea: For every u € V(G), prove that u € C; or u & C; (whichever is true).

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

sequence of vertices.

Verification: Check whether:

® Vj, seq; is either path(v;) or nopath(v;).

® # of vs tor which seq; = path(v;) is c.

Proof of NL = coNL ...

Q. How can someone prove that |C;| = ¢, if you know |C,_;|?

Idea: For every u € V(G), prove that u € C; or u & C; (whichever is true).

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

sequence of vertices.

Verification: Check whether:

® Vj, seq; is either path(v;) or nopath(v;). verification is

doable in Logspace,

® # of vs tor which seq; = path(v;) is c. —

reao-once manner.

Proof of NL = coNL ...

Q. How can someone prove that |C;| = ¢, if you know |C,_;|?

Idea: For every u € V(G), prove that u € C; or u & C; (whichever is true).

Proposed Solution: v, : seq, v, : seq, , ...,V : seqy, where v; € V(G) and seq; is a

sequence of vertices.

Verification: Check whether:

® Vj, seq; is either path(v;) or nopath(v;). verification is

doable in Logspace,

® # of vs tor which seq; = path(v;) is c. —

reao-once manner.
o k =n.

oy, <V, < ...< V.

Certificate: size(c) =

Proof of NL = coNL ...

Proof of NL = coNL ...

There exists a read-once logspace verifiable certificate that:

Proof of NL = coNL ...

There exists a read-once logspace verifiable certificate that:

® Provesv € C..

Proof of NL = coNL ...

There exists a read-once logspace verifiable certificate that:
® Provesv € C..

® Provesv & C, it |C,_| is already known. (certiticate is nopath.(v))

Proof of NL = coNL ...

There exists a read-once logspace verifiable certificate that:
® Provesv € C..
® Provesv & C, it |C,_| is already known. (certiticate is nopath.(v))

® Proves |C;| =c, it |C,_;| is already known. (certificate is size(c))

Proof of NL = coNL ...

There exists a read-once logspace verifiable certificate that:
® Provesv € C..
® Provesv & C, it |C,_| is already known. (certiticate is nopath.(v))

® Proves |C;| =c, it |C,_;| is already known. (certificate is size(c))

We know C, = {s}, | Cy| = 1.

Proof of NL = coNL ...

There exists a read-once logspace verifiable certificate that:
® Provesv € C..
® Provesv & C, it |C,_| is already known. (certiticate is nopath.(v))

® Proves |C;| =c, it |C,_;| is already known. (certificate is size(c))

We know C, = {s}, | Cy| = 1.

Final certificate for PATH:

Proof of NL = coNL ...

There exists a read-once logspace verifiable certificate that:
® Provesv € C..
® Provesv & C, it |C,_| is already known. (certiticate is nopath.(v))

® Proves |C;| =c, it |C,_;| is already known. (certificate is size(c))

We know C, = {s}, | Cy| = 1.

Final certificate for PATH:

size,(|Cy|)

Proof of NL = coNL ...

There exists a read-once logspace verifiable certificate that:
® Provesv € C..
® Provesv & C, it |C,_| is already known. (certiticate is nopath.(v))

® Proves |C;| =c, it |C,_;| is already known. (certificate is size(c))

We know C, = {s}, | Cy| = 1.

Final certificate for PATH: - certificate that proves the size of C; knowing | Co .

size,(|C, 1)

Proof of NL = coNL ...

There exists a read-once logspace verifiable certificate that:
® Provesv € C..
® Provesv & C, it |C,_| is already known. (certiticate is nopath.(v))

® Proves |C;| =c, it |C,_;| is already known. (certificate is size(c))

We know C, = {s}, | Cy| = 1.

Final certificate for PATH: - Certificate that proves the size of C) knowing | Co |-

size,(1Cy 1), sizey(| Cs|)

Proof of NL = coNL ...

There exists a read-once logspace verifiable certificate that:
® Provesv € C..
® Provesv & C, it |C,_| is already known. (certiticate is nopath.(v))

® Proves |C;| =c, it |C,_;| is already known. (certificate is size(c))

We know C, = {s}, | Cy| = 1.

Final certificate for PATH: - Certificate that proves the size of C) knowing | Co |-

size (| C; |)SiZ€2(|Gy 1), ..., size, (|C,_¢]|)

Proof of NL = coNL ...

There exists a read-once logspace verifiable certificate that:
® Provesv € C..
® Provesv & C, it |C,_| is already known. (certiticate is nopath.(v))

® Proves |C;| =c, it |C,_;| is already known. (certificate is size(c))

We know C, = {s}, | Cy| = 1.

Final certificate for PATH: __ Certificate that proves the size of C| knowing | Gy |.

size,(| C |)sizez(| G5 1), ..., size, (| C._i|), nopath, (t)

Proof of NL = coNL ...

There exists a read-once logspace verifiable certificate that:
® Provesv € C..
® Provesv & C, it |C,_| is already known. (certiticate is nopath.(v))

® Proves |C;| =c, it |C,_;| is already known. (certificate is size(c))

We know C, = {s}, | Cy| = 1.

Final certificate for PATH: - Certificate that proves the size of C, knowing | Cy|.

size,(| C |)sizez(| G5 1), ..., size, (| C._i|), nopath, (t)

Corollary: For every space-constructible function S(n) > logn,

NSPACE(S(n)) = coNSPACE(S(n)).

